Решение уравнений и неравенств с переменными под знаком модуля

Программа спецкурса по математике для учащихся 9 класса (адаптированная) Срок реализации – 1 год

> Составитель: Гусева Марина Валентиновна, учитель математики, высшая квалификационная категория

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Основная задача обучения математике в школе — обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену общества, достаточных для изучения смежных дисциплин и продолжения образования. От степени реализации данных задач зависит достижение учащимися положительных результатов на итоговой аттестации. Спецкурс «Решение уравнений и неравенств род знаком модуля» является поддерживающим основной курс математики основной школы.

Данный спецкурс дает примерный объем знаний, умений и навыков, которым должны овладеть школьники. В этот объем, безусловно, входят те знания, умения и навыки, обязательное приобретение которых предусмотрено требованиями программы общеобразовательной школы: однако предполагается более высокое качество их сформированности. Учащиеся должны научиться решать задачи более высокой по сравнению с обязательным уровнем сложности, овладеть рядом технических и интеллектуальных умений на уровне их свободного использования. Одна из целей преподавания данного курса ориентационная — помочь осознать ученику степень значимости своего интереса к математике и оценить свои возможности, поэтому интерес и склонность учащегося к занятиям на курсах должны всемерно подкрепляться и развиваться.

Элективный курс рассчитан на учащихся 9 классов и посвящен систематическому изложению материала, связанного с понятием модуля числа и его применения при решении уравнений и неравенств. Материал данного курса содержит «нестандартные» методы, которые позволяют более эффективно решать широкий класс заданий, содержащих модуль, и, безусловно, может использоваться учащимися как на занятиях элективного курса, так и на уроках математики в 9 классе. Программа курса включает 17 учебных часов.

Цели курса:

- помочь повысить уровень понимания и практической подготовки в таких вопросах, как:
 - а) преобразование выражений, содержащих модуль;
 - б) решение уравнений и неравенств, содержащих модуль;
 - в) построение графиков элементарных функций, содержащих модуль;
- создать в совокупности с основными разделами курса базу для развития способностей учащихся;
- помочь осознать степень своего интереса к предмету и оценить возможности овладения им с точки зрения дальнейшей перспективы.

Задачи курса:

Образовательная:

- научить разным методам решения задач, в которых присутствует модуль числа.

Развивающая:

 развивать умения преодолевать трудности при решении задач разного уровня сложности.

Воспитательная:

– помочь ученику оценить свой потенциал с точки зрения образовательной перспективы, формировать логическое, абстрактное, эвристическое мышление.

Работа курса строится на принципах:

- научности;
- доступности;
- опережающей сложности;
- вариативности;
- самоконтроля.

Курс в основном предназначен для учащихся, увлекающихся математикой, но благодаря содержанию курс может быть интересен и другим категориям школьников. Курс построен на материале алгебры 7-9 классов. Содержание курса качественно отличается от базового тем, что в нем будут изучаться многие интересные задания с модулем числа, т.к. у них своя специфика. Это и уравнения, неравенства, графики, которых нет в учебниках.

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ И СПОСОБЫ ИХ ОЦЕНКИ

В результате изучения курса учащиеся должны уметь:

- точно и грамотно формулировать теоретические положения и излагать собственные рассуждения в ходе решения заданий;
 - применять изученные алгоритмы для решения соответствующих заданий;
 - преобразовывать выражения, содержащие модуль;
 - решать уравнения и неравенства, содержащие модуль;
 - строить графики элементарных функций, содержащих модуль.

На занятиях спецкурса развиваются коммуникативные качества обучающихся, чему способствует работа в парах, группах, выступления с докладами, коллективное обсуждение решений. Развивается потребность в самообразовании, совершенствуется самостоятельная работа учащихся.

КОМПЕТЕНЦИИ ПРИ ИЗУЧЕНИИ КУРСА

Познавательные:

- Умение самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки цели до получения и оценки результата).
- Участие в организации и проведении учебно-исследовательской работы. Самостоятельное создание алгоритмов познавательной деятельности для решения задач творческого и поискового характера.
 - Создание собственных текстов с использованием разнообразных средств.

Информационные:

- Поиск нужной информации по заданной теме в источниках различного типа.
- Извлечение необходимой информации из текстов, таблиц, графиков.
- Отделение основной информации от второстепенной.
- Передача содержания информации адекватно поставленной цели (сжато, полно, выборочно).
- Развернутое обоснование суждения, приведение обоснования (доказательства), примеров.

Коммуникативные:

- Владение навыками организации и участия в коллективной деятельности; восприятие иных мнений, объективное определение своего вклада в общий результат.
- Оценивание своего поведения в группе, выполнение требований в совместной практической деятельности.
 - Умение отстаивать свою точку зрения.
 - Развитие готовности к сотрудничеству.

Для успешного анализа и самоанализа прохождения курса будут использованы диагностические работы. (**ПРИЛОЖЕНИЕ 1**)

СОДЕРЖАНИЕ

Тема 1. Введение. Модуль числа (понятие, определение, применение в других областях науки и техники). Модуль действительного числа. История происхождения.

Определение: абсолютной величиной (или модулем) [a] числа а называется: само число, если а – положительное число; нуль, если число а – нуль; число, противоположное

числу а, если а – отрицательное число: $|a| = \begin{cases} a, & \text{если } a \ge 0, \\ -a, & \text{если } a < 0. \end{cases}$

Свойства модуля действительного числа.

1.
$$|a+b| \le |a| + |b|$$
. 3. $\left|\frac{1}{a}\right| = \frac{1}{|a|} \operatorname{пр} a \ne 0$.

2.
$$|a \cdot b| = |a| \cdot |b|$$
. 4. $|a - b| \ge |a| - |b|$.

Применение модуля в других областях "Модуль в точных науках и его применение".

Тема 2. Решение уравнений с переменной поз знаком модуля аналитическим способом.

Простейшие уравнения с модулем (решение уравнений по определению). Решение простейших уравнений с модулем вида |f(x)| = a, |f(x)| = g(x). Решение уравнений с модулем . Уравнения, содержащие два модуля. Решение уравнений |f(x)| = |g(x)|.

При решении уравнений вида |f(x)| = |g(x)|. традиционным способом , в несложных случаях можно возвести обе части уравнения в квадрат, избавившись от модуля и получив равносильное уравнение.

Тема 3. Решение задач, содержащих модуль (4 часа)

Уравнения, содержащие два модуля и более. Решение уравнений вида ||f(x)|| = a (уравнения с "вложенными" модулями), |f(x)| + |g(x)| = a.

При решении уравнений содержащих два или более модулей можно использовать, кроме обычных способов, метод интервалов.

Тема 4. Решение неравенств, содержащих неизвестную величину под знаком модуля (Зчаса)

Неравенства, содержащие модуль. Решение неравенств вида

|f(x)| > a, |f(x)| < a, |f(x)| > g(x), |f(x)| < g(x) и т.д. Принцип решения неравенств, содержащих модули, аналогичен решению соответствующих уравнений. Отличие состоит в том, что при решении уравнений широко используется проверка, а при решении неравенств это часто вызывает затруднения. Следовательно, при решении неравенств необходимо использовать равносильные переходы, некоторые неравенства решаются с помощью замены переменной. Но более рационально - перейти к двойному неравенству или к равносильной системе двух

$$|f(x)| < g(x) \Leftrightarrow -g(x) < f(x) < g(x) \Leftrightarrow \begin{cases} f(x) < g(x), \\ f(x) > -g(x), \end{cases}$$
 неравенств $|f(x)| > g(x) \Leftrightarrow \begin{cases} f(x) < g(x), \\ f(x) > -g(x), \end{cases}$ и также переходя $|f(x)| > g(x) \Leftrightarrow \begin{cases} f(x) < g(x), \\ f(x) < -g(x), \end{cases}$ к равносильной совокупности двух неравенств

к равносильной совокупности двух неравенств

Тема 5. Графический способ решения линейных уравнений и неравенств, содержащих модуль (3 часа)

Построение графиков функций y = |f(x)|, y = f|(x)|.

Построение графика функции y = |f(x)|: части графика функции y = f(x), лежащие выше оси x и на оси x, остаются без изменения, а лежащие ниже оси x симметрично отражаются относительно этой оси (вверх).

Замечание: функция y = |f(x)|: неотрицательна (ее график расположен в верхней полуплоскости).

Построение графика функции y = |f(x)|: часть графика функции y = f(x), лежащая левее оси y, удаляется, а часть, лежащая правее оси y - остается без изменения u, кроме того, симметрично отражается относительно оси y (влево). Точка графика, лежащая на оси y, остается неизменной.

3амечание: функция y = |f(x)|: четная (ее график симметричен относительно оси y).

Тема 8. Зачетное занятие.

Формой итогового контроля может стать самостоятельная работа, тестовая работа, собеседование, доклад, защита проекта и т.д.

УЧЕБНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№	Название темы	Кол- во часов	Форма занятия	Образовательный продукт, формы работы			
Введение (1час)							
1.	Модуль действительного числа. История происхождения.	1	Анкета, диагностическая работа № 1.	Устные сообщения			
I	Решение уравнений с переме	енной по	з знаком модуля аналитич	неским способом			
(5 часов)							
2.	Решение уравнений с переменной поз знаком модуля аналитическим способом.	1	Лекция с элементами практики.	Таблица "Свойства модуля»			
3.	Алгоритм решения уравнений с переменной под знаком модуля.	1	Практикум.	Практические работы учащихся			
4.	Решение уравнений вида $f(x) = q(x)$	1	Лекция, практикумы.	Работа в группах.			
5.	Решение уравнений вида $ f(x) = q(x) $	1	Занятие-исследование, урок одной задачи	Работа с литературой, доклад.			
6.	Решение уравнений разных типов, содержащих модуль.	1	Лекция, практикум.	Тест			
Решение задач, содержащих модуль (4 часа)							
7.	Основные способы решения задач с помощью уравнений, содержащих модуль.	1	Лекция с элементами практики. Занятие- эксперимент.	Опорный конспект			
8-9.	Метод замены переменной	2	Лекция с элементами практики.	Практическая работа.			
10.	Решение задач разных типов, содержащих модуль.	1	Практикум.	Практическая работа.			
Реш	ение неравенств, содержащи	іх неизв	естную величину под знак	сом модуля (Зчаса)			
11.	Основные методы решения неравенств, содержащих модуль.	1	Лекция.	Сообщения учащихся.			

12-	Решение неравенств,	2	Практикум.	Практические				
13.	содержащих модуль.			работы.				
Ι	Графический способ решения линейных уравнений и неравенств, содержащих							
	модуль (3 часа)							
14.	Построение графиков	1		Графическая				
	функций, содержащих		Лекция.	работа.				
	модуль.							
15-	Графический способ	2		Практические				
16.	решения уравнений и		Практикум.	работы.				
	неравенств с модулем.							
17.	Зачетное занятие.	1	Диагностическая работа	Зачетная работа.				
			<u>№</u> 2.					
	итого:	17						

ПРОГРАММНО – МЕТОДИЧЕСКИЕ РЕСУРСЫ

- 1. Гусев, В. А. Внеклассная работа по математике в 6–8 классах: книга для учителя. М.: Просвещение, 1984.
- 2. Задачи по математике. Уравнения и неравенства. Под редакцией В.В.Вавилова М.: Наука,1987
- 3. Зорин В.В. Пособие по математике для поступающих в ВУЗы. М.: Высшая школа, 1980
 - 4. Коршунова, Е. Модуль и квадратичная функция // Математика. № 7. 1998.
- 5. Крамор В.С. Повторяем и систематизируем школьный курс алгебры и начала анализа. М.:Просвещение,1990
- 6. Коваленко В.Г. Дидактические игры на уроках математики: Кн. для учителя.-М.: Просвещение, 1990
- 7. Олехних С.Н. Уравнения и неравенства. Нестандартные методы решения. 10-11 классы. М.:Дрофа,2002
- 8. Садыкина, Н. Построение графиков и зависимостей, содержащих знак модуля // Математика. № 33. 2004. С. 19–21.
- 9. Сборник задач по математике с решениями. Под редакцией М.И.Сканави. М.:Оникс, 1998
- 10. Скворцова, М. Уравнения и неравенства с модулем. 8–9 классы // Математика. № 20. 2004. С. 17.
- 11. Степанов В.Д. Активизация внеурочной работы по математике в средней школе: Кн. для учителя.- М.: Просвещение. 1991
 - 12. Электронные ресурсы: www.fipi.ru, свободный доступ.
 - 13. Электронные ресурсы: www.ege.edu.ru, свободный доступ

ПРИЛОЖЕНИЕ 1.

Диагностическая работа №1 проводится на первом занятии курса.

<u>Задача</u> проведения работы: выявление уровня знаний, умений и навыков по теме «Модуль числа»

Содержание диагностической работы № 1:

- 1. Упростить выражение $\frac{a^2-9}{|a|+3}$.
- 2. Решить уравнение: |x + 4| = 5.
- 3. Решить уравнение: $3 | x^2 + 4x + 2 | = 5x + 16$.
- 4. Решить неравенство: $|2x 4| \ge 6$.

- 5. Решить неравенство: |3x + 5| < 2, изобразить множество решений на координатной оси.
- 6. Построить график функции y = 2 | x + 2 | 3.

Диагностическая работа №2 проводится на 17 занятии курса. Задача проведения работы: выявление знаний, умений учеников полученных в результате изучения элективного курса.

Содержание диагностической работы № 2.

1. Упростите выражение:
$$\frac{a^2 - |a| + 1 - a}{|a - 1|}$$
.

- 2. Решите уравнение: |x + 4| = 2x 5.
- 3. Решите уравнение: $|5x^2 10x + 25| = 10x 5$.
- 4. Решите неравенство: | x 12 | > x + 3.
- 5. Решите неравенство и изобразите множество решений на координатной прямой: $3 \mid x^2 4 \mid \leq 3$
- 6. Построить график функции: y = 2 | x 2 | + 5.
- 7. Построить график функции: y = | | x | 3 |.

Критерии оценки

Правильно выполненные и аргументированные решения - 1 балл. Задания, выполненные с ошибкой, но логически верные - 0,5 балла. Не выполненные задания - 0.

Уровень знаний оценивается по следующим критериям:

низкий уровень	1 – 3 балла
средний уровень	3,5 – 5 баллов
высокий уровень	5,5 — 7 баллов